A Bayesian context fear learning algorithm/automaton

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian context fear learning algorithm/automaton

Contextual fear conditioning is thought to involve the synaptic plasticity-dependent establishment in hippocampus of representations of to-be-conditioned contexts which can then become associated with USs in the amygdala. A conceptual and computational model of this process is proposed in which contextual attributes are assumed to be sampled serially and randomly during contextual exposures. Gi...

متن کامل

Context fear learning in the absence of the hippocampus.

Lesions of the rodent hippocampus invariably abolish context fear memories formed in the recent past but do not always prevent new learning. To better understand this discrepancy, we thoroughly examined the acquisition of context fear in rats with pretraining excitotoxic lesions of the dorsal hippocampus. In the first experiment, animals received a shock immediately after placement in the conte...

متن کامل

Nonparametric Bayesian Context Learning for Buried Threat Detection

Nonparametric Bayesian Context Learning for Buried Threat Detection by Christopher Ralph Ratto Department of Electrical and Computer Engineering Duke University

متن کامل

Learning Temporal Context in Active Object Recognition Using Bayesian Analysis

Active object recognition is a successful strategy to reduce uncertainty of single view recognition, by planning sequences of views, actively obtaining these views, and integrating multiple recognition results. Understanding recognition as a sequential decision problem challenges the visual agent to select discriminative information sources. The presented system emphasizes the importance of tem...

متن کامل

Bayesian Network Learning with Abstraction Hierarchies and Context-Specific Independence

Context-specific independence representations, such as treestructured CPTs, reduce the number of parameters in Bayesian networks by capturing local independence relationships. We previously presented Abstraction-Based Search (ABS), a technique for using attribute value hierarchies during Bayesian network learning to remove unimportant dis-ion-Based Search (ABS), a technique for using attribute ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Behavioral Neuroscience

سال: 2015

ISSN: 1662-5153

DOI: 10.3389/fnbeh.2015.00112